Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 404(11-12): 979-1002, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37823775

RESUMO

Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.


Assuntos
RNA Polimerase I , Saccharomyces cerevisiae , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ribossomos/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
2.
Methods Mol Biol ; 2533: 63-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796982

RESUMO

In archaea and bacteria the major classes of RNAs are synthesized by one DNA-dependent RNA polymerase (RNAP). In contrast, most eukaryotes have three highly specialized RNAPs to transcribe the nuclear genome. RNAP I synthesizes almost exclusively ribosomal (r)RNA, RNAP II synthesizes mRNA as well as many noncoding RNAs involved in RNA processing or RNA silencing pathways and RNAP III synthesizes mainly tRNA and 5S rRNA. This review discusses functional differences of the three nuclear core RNAPs in the yeast S. cerevisiae with a particular focus on RNAP I transcription of nucleolar ribosomal (r)DNA chromatin.


Assuntos
RNA Polimerase I , Proteínas de Saccharomyces cerevisiae , RNA Polimerases Dirigidas por DNA/metabolismo , RNA/metabolismo , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
3.
J Biol Chem ; 298(5): 101862, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341765

RESUMO

Elongating nuclear RNA polymerases (Pols) frequently pause, backtrack, and are then reactivated by endonucleolytic cleavage. Pol backtracking and RNA cleavage are also crucial for proofreading, which contributes to transcription fidelity. RNA polymerase I (Pol I) of the yeast Saccharomyces cerevisiae synthesizes exclusively 35S rRNA, the precursor transcript of mature ribosomal 5.8S, 18S, and 25S rRNA. Pol I contains the specific heterodimeric subunits Rpa34.5/49 and subunit Rpa12.2, which have been implicated in RNA cleavage and elongation activity, respectively. These subunits are associated with the Pol I lobe structure and encompass different structural domains, but the contribution of these domains to RNA elongation is unclear. Here, we used Pol I mutants or reconstituted Pol I enzymes to study the effects of these subunits and/or their distinct domains on RNA cleavage, backtracking, and transcription fidelity in defined in vitro systems. Our findings suggest that the presence of the intact C-terminal domain of Rpa12.2 is sufficient to support the cleavage reaction, but that the N-terminal domains of Rpa12.2 and the heterodimer facilitate backtracking and RNA cleavage. Since both N-terminal and C-terminal domains of Rpa12.2 were also required to faithfully incorporate NTPs in the growing RNA chain, efficient backtracking and RNA cleavage might be a prerequisite for transcription fidelity. We propose that RNA Pols containing efficient RNA cleavage activity are able to add and remove nucleotides until the matching nucleotide supports RNA chain elongation, whereas cleavage-deficient enzymes can escape this proofreading process by incorporating incorrect nucleotides.


Assuntos
RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Nucleotídeos , RNA , Clivagem do RNA , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
4.
Nucleic Acids Res ; 48(1): 405-420, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31745560

RESUMO

More than 200 assembly factors (AFs) are required for the production of ribosomes in yeast. The stepwise association and dissociation of these AFs with the pre-ribosomal subunits occurs in a hierarchical manner to ensure correct maturation of the pre-rRNAs and assembly of the ribosomal proteins. Although decades of research have provided a wealth of insights into the functions of many AFs, others remain poorly characterized. Pol5 was initially classified with B-type DNA polymerases, however, several lines of evidence indicate the involvement of this protein in ribosome assembly. Here, we show that depletion of Pol5 affects the processing of pre-rRNAs destined for the both the large and small subunits. Furthermore, we identify binding sites for Pol5 in the 5' external transcribed spacer and within domain III of the 25S rRNA sequence. Consistent with this, we reveal that Pol5 is required for recruitment of ribosomal proteins that form the polypeptide exit tunnel in the LSU and that depletion of Pol5 impairs the release of 5' ETS fragments from early pre-40S particles. The dual functions of Pol5 in 60S assembly and recycling of pre-40S AFs suggest that this factor could contribute to ensuring the stoichiometric production of ribosomal subunits.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Biossíntese de Proteínas , RNA Ribossômico/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sítios de Ligação , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...